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Storage: 104MB
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Figure 1: (a) 3D Gaussian splatting (3DGS) results trained for 7K iterations. (b) 3DGS results trained for 30K iterations, in which
more Gaussian primitives are allocated so quality gets higher, speed gets slower, and storage gets larger compared to (a). (c)
SUNDAE results by pruning 90% primitives upon (a), being much smaller in storage, more accurate and a little bit slower than
(a). Note that the storage usage is not 10% of (a) because an additional neural compensation head is used.

ABSTRACT
Recently, 3D Gaussian Splatting, as a novel 3D representation, has
garnered attention for its fast rendering speed and high rendering
quality. However, this comes with high memory consumption, e.g.,
a well-trained Gaussian field may utilize three million Gaussian
primitives and over 700 MB of memory. We credit this high memory
footprint to the lack of consideration for the relationship between
primitives. In this paper, we propose a memory-efficient Gaussian
field named SUNDAE with spectral pruning and neural compen-
sation. On one hand, we construct a graph on the set of Gaussian
primitives to model their relationship and design a spectral down-
sampling module to prune out primitives while preserving desired
signals. On the other hand, to compensate for the quality loss of
pruning Gaussians, we exploit a lightweight neural network head
to mix splatted features, which effectively compensates for quality
losses while capturing the relationship between primitives in its
weights. We demonstrate the performance of SUNDAE with exten-
sive results. For example, SUNDAE can achieve 26.80 PSNR at 145
FPS using 104 MB memory while the vanilla Gaussian splatting
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algorithm achieves 25.60 PSNR at 160 FPS using 523 MB mem-
ory, on the Mip-NeRF360 dataset. Codes are publicly available at
https://runyiyang.github.io/projects/SUNDAE/.

CCS CONCEPTS
• Computing methodologies→ Computer vision; Computer
graphics.
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1 INTRODUCTION
Representing 3D scenes has been a longstanding problem in com-
puter vision and graphics, serving as the foundation for various
VR/AR [59][43] and robotics [61][72][71] applications. With the
rise of the neural radiance field (NeRF) [38], a series of meth-
ods have emerged to enhance the quality and efficiency of NeRF
[9, 14, 19, 40, 52, 62, 66]. Recently, 3D Gaussian splatting (3DGS)
[29][64][51] has been proposed as a novel 3D scene representation,
utilizing a set of 3D positions, opacity, anisotropic covariance, and
spherical harmonic (SH) coefficients to represent a 3D scene. Com-
pared to neural rendering methods, this technique demonstrates
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notable advantages in rendering speed, rendering quality, and train-
ing time, making it widely used for applications such as 3D editing
[13, 53] and digital twins [28, 31].

Although 3DGaussian splatting (3DGS) offers several advantages
over other implicit 3D representations, training a 3DGS model faces
a large storage challenge (i.e., checkpoint storage on ROM), as
depicted in Fig. 1 (a) and (b). This issue arises from the training
process to gradually populate empty areas with Gaussian primitives,
so that the rendering results can better fit input images. Compared
with recent neural renderingmethods [5, 40], 3DGS requires a much
larger memory cost for the same scene, which limits the application
of 3GDS on mobile platforms and edge computing.

In this paper, our goal is to address the high memory cost of
3D Gaussian splatting. We introduce a memory-efficient method,
which achieves low storage usage while maintaining high rendering
speed and good quality. As illustrated in Fig. 1 (c), our approach
achieves photorealistic rendering quality with much lower storage.

As previously mentioned, training a vanilla 3DGS leads to a large
number of Gaussian primitives, some of which are redundant. We
credit the redundancy of Gaussian primitives to the fact that these
primitives are independent of each other in the 3DGS formulation.
In response, we aim to improve the modeling of the relationship
between Gaussians to reduce primitive redundancy. We achieve
this through two complementary techniques: spectrally pruning
the primitive graph and incorporating a neural compensation head.
Consequently, our method is referred to as spectrally pruned Gauss-
ian fields with neural compensation, abbreviated as SUNDAE.

Gaussian 
Splatting

(a) Spectral Pruning

(b) Feature splatting

(c) Neural Compensation

w/o relationship 3D relationship 2D relationship

Figure 2: The left panel shows vanilla 3D Gaussian splatting,
which requires a large amount of storage as it does not cap-
ture the relationship between primitives. The middle panel
shows our spectral pruning technique that is based upon the
relationship between 3D Gaussians. The right panel shows
that the neural compensation head exploits the relationship
between 2D feature splatting results to improve rendering.

Spectral Graph Pruning: Gaussian fields utilize a collection
of Gaussian primitives as the representation of the scene. As these
primitives are irregularly distributed in 3D space, we propose a
graph-based data structure, rather than regular structures like grids,

to capture the relationship between these primitives. This is con-
ceptually illustrated in the middle panel of Fig. 2. Specifically, We
introduce the graph signal processing theory [11] to derive an
optimal stochastic sampling strategy that preserves band-limited
information on this graph. By controlling the spectrum’s band, we
achieve flexible control over pruning ratios. For example, in Fig.1
(c), 90% of Gaussian primitives from Fig.1 (a) are pruned out.

Neural Compensation: After spectral pruning, there is an in-
evitable decrease in rendering quality. To address this, we employ
a neural compensation head to compensate for this quality loss,
as conceptually illustrated in the right panel of Fig. 2. We transi-
tion from the Gaussian splatting paradigm to a feature splatting
paradigm by attaching feature vectors to Gaussian primitives. Sub-
sequently, a lightweight neural network is introduced to predict
RGB values on the splatted feature images, thereby integrating in-
formation from different primitives. This allows the relationship
between primitives to be captured in the weights of the compensa-
tion network, indirectly in the 2D domain of splatted features.

In summary, these two techniques operate in a complementary
manner to tackle the absence of primitive relationship model-
ing in 3DGS. The spectral graph pruning technique removes less
important primitives on the primitive graph, while the neural com-
pensation technique integrates information from the remaining
primitives. Through comprehensive qualitative and quantitative
benchmarking on three datasets (Mip-NeRF360, Tanks&Temples,
and Deep Blending), we demonstrate that SUNDAE effectively re-
duces the size of Gaussian fields while preserving good quality and
fast rendering speed. Our contributions can be summarized as:

• Anewly proposed primitive pruning framework for Gaussian
fields based upon the spectrum of primitive graphs;

• A novel feature splatting and mixing module to compensate
for the performance drop caused by the pruning;

• State-of-the-art results, in terms of both quality and speed,
on various benchmarks with low memory footprint.

2 RELATEDWORKS
Conventional 3D Scene Representations. Various 3D repre-
sentations have been proposed for 3D reconstruction. Point cloud
based representation [35, 39, 63] is extensively employed due to its
simplicity and effectiveness in depicting 3D scenes. VoxelMap[65]
introduced a novel and efficient probabilistic adaptive voxel map-
ping method within the parameterized plane feature. While most
of the voxel-based representation is more suitable for the down-
stream planning task to avoid the collision. Moreover, mesh-based
method [8, 36] offer distinct advantages in representing complex
geometries. ElasticFusion [60] builds on the surfel-based method to
reconstruct the dense map with color. This representation is more
continuous and realistic. They exploit relationship within the 3D
representation in various ways, motivating our study.

Efficient Neural Rendering. Vanilla NeRF [38] involves exten-
sive neural network calculations at 3D positions on a pixel-by-pixel
basis, which hinders real-time rendering. Recent approaches [9,
14, 19, 40, 52, 62, 66] have focused on improving the efficiency
of Neural radiance fields, and the main perspectives include, for
example, fast training, fast rendering and low memory footprint.
Instant-NGP [40] uses amultiresolution hash table to store learnable
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features and additionally uses a small neural network for decoding,
enabling fast training. Other methods for accelerated training either
use dense voxel grids, such as DVGO [52] which uses a density
voxel grid and a feature voxel grid for explicit and discretized vol-
ume representation, or sparse voxel grids, such as Plenoxels [19]
which uses a sparse 3D grid with spherical harmonics for scene
representation. While these approaches significantly accelerate
training, they do not render in real-time and necessitate a large
consumer GPU for rendering. 3D Gaussian splatting [29] represents
the scene using 3D Gaussians and utilizes a fast, differentiable ren-
dering approach to achieve both high-quality novel view synthesis
and real-time rendering. Our SUNDAE focuses on integrating two
novel techniques to leverage the primitive relationship in Gaussian
fields and improve storage efficiency.

Primitive-based Neural Rendering.Different from the Vanilla
NeRF that utilizes a fully implicit network for scene representation,
or grid-based neural radiance fields [19, 40] that evenly distrib-
ute the model parameters into each voxel grid vertex, point-based
neural radiance fields [20, 23, 24, 26, 29, 33, 37, 46, 49, 62, 68, 70]
introduce explicit graphic primitives into the construction of the
neural implicit fields that allows adaptive control on the model
expressiveness within limited memory consumption. Specifically,
PointNeRF [62] associates neural features with points and performs
k-NN interpolation upon arbitrary point query, allowing the net-
work to capture finer scene details by increasing local neural point
density. Different from raytracing-based methods, ADOP [46] and
3DGS [29] use rasterization techniques to render novel viewpoints.

Graph Signal Processing. Graph Signal Processing aims to
develop tools to process data with an irregular structure, i.e., on a
graph domain. The first and most important area in graph signal
processing is to design graph representations [42]. Groundbreaking
contributions [16] and [15] presented initial samples of designs
founded on the vertex and spectral domain properties, respectively.
However, both frequency and time domains alone have their draw-
backs [42]. Recent research [3, 18, 32, 41, 54, 55, 67] are gradually
moving their focus on the development of critically sampled fil-
terbanks that have a vertex-localized implementation as well as a
spectral interpretation. Another problem in graph signal process-
ing is sampling graph signals. The key idea is to define a class of
graph signals, i.e., bandlimited, and then define conditions to re-
construct a signal in that class. The concepts are first presented in
[44]. A sufficient and necessary condition for unique recovery is
defined in [1] and is soon generalized to other types of graphs and
signals [11, 47, 48]. However, sampling signals on large graphs is
a great challenge due to its complexity. Some techniques require
computing the first K basis vectors[11] and other work[2] utilizes
spectral proxies instead of exact graph frequencies to reduce com-
plexity. Random strategy has also been proposed in [45] which leads
to significantly lower complexity but less comparable performance.

Graph signal processing has been used in a wide variety of
applications, including sensor networks [12, 17, 21, 57], biology
networks [4, 6, 34], data science [7, 27, 58] and image&pointcloud
processing [10, 25, 56, 69]. To the best of our knowledge, we are
the first to introduce graph signal processing to the pruning of
primitive-based neural rendering methods.

3 METHODS
Given a set of images 𝐼𝑖 ∈ I, along with the corresponding camera
calibration parameters 𝐶𝑖 , 3DGS [29] reconstructs the scene by
representing it with Gaussian primitives yet with a high storage
usage. We credit this weakness to the fact that the relationship
between Guassians are not exploited in 3DGS. We introduce SUN-
DAE, a memory-efficient Gaussian field, featuring a graph-based
pruning approach and a neural compensation module. The overall
framework is depicted in Fig. 3. We begin by fitting 3D Gaussians
as a “warm-up" process in Section 3.1. To reduce memory usage, we
introduce an one-step graph signal processing approach in Section
3.2. This involves constructing a Gaussian primitive graph to model
the relationship between primitives and utilizing a band-limit graph
filter to prune redundant Gaussian primitives. To mitigate quality
loss caused by pruning, we adopt a neural compensation module in
Section 3.3, which restores the RGB image 𝐼𝑖 from the neural image
𝐹𝑖 using a lightweight neural network. Finally, we introduced a
continuous pruning as an alternative strategy in Sec. 3.4.

3.1 3D Gaussian Splatting Warm Up
We utilize the vanilla 3D Gaussian Splatting [29] as the initial step
for generating a dense representation of a scene using Gaussian
primitives. This step starts by using a sparse point cloud to initialize
Gaussian centers. Then, an efficient densification strategy is ex-
ploited to increase the number of these primitives. Additionally, the
rasterization process involves splatting the 3D Gaussian primitives
onto the 2D plane to reconstruct input images.

3.1.1 Gaussian Primitive Initialization. The point cloud 𝑃𝑐 obtained
through Structure-from-Motion (SfM) [50] serves as the initial input
for representing the 3D scene using Gaussian primitives 𝑃 . We turn
the 3D coordinates 𝑥 ∈ 𝑃𝑐 into Gaussian primitives 𝑝 ∈ 𝑃 , as
described by the following equation:

𝑝 (𝑥) = exp(−1
2
(𝑥)𝑇 Σ−1 (𝑥)), (1)

where the Σ is defined as 3D covariancematrix in the world space.
To ensure the positive semi-definiteness and to uphold the physical
interpretation of the covariance matrix, an ellipsoid configuration is
used to represent the 3D Gaussian covariance. The decomposition
of Σ is achieved using a scaling matrix 𝑆 and a rotation matrix 𝑅,
as expressed in the equation:

Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 . (2)

This representation of anisotropic covariance is particularly ad-
vantageous for optimization processes. The generated Gaussian
primitives are characterized by positions 𝑥 , opacity 𝛼 , and a covari-
ance matrix Σ. Additionally, the chromatic attributes of Gaussian
primitives are encoded by spherical harmonic (SH) coefficients.

3.1.2 Gaussian Primitive Densification. During the training pro-
cess, all parameters of Gaussian primitives are optimized, and a
densification strategy is integrated to improve representation power.
Initially, Gaussian primitives exhibit a sparsity level similar to that
of the point cloud generated via SfM, which is not enough for rep-
resenting detailed parts of the scene, such as grass and trees in
outdoor scenes. So Gaussian primitives with extensive covariance,
which tend to oversimplify the geometric intricacies of detailed
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Figure 3: (a) Pipeline: Our proposed method warms up a 3D Gaussian field firstly, followed by a Graph-based pruning strategy
to down-sample the Gaussian primitives, and a convolutional neural network to compensate the losses caused by pruning. (b)
Graph-based Pruning: A graph based on the spatial relationship between the Gaussian primitives, is utilized for pruning post
warm-up. Employing a band-limited graph filter, this process facilitates the extraction of fine details from high-frequency
components, alongside capturing general features from low-frequency parts, thereby enabling a comprehensive and efficient
representation of the entire scene.

scene segments, are subdivided into smaller Gaussians. Meanwhile,
those with minimal covariance, indicating under-representation,
are duplicated to enhance coverage. We adopt the densification pa-
rameters from [29] to increase the density of Gaussians and achieve
a high-quality warm-up for the subsequent pruning process.

3.2 Spectral Graph Pruning
After warm-up, a dense representation using Gaussian primitives
incurs significant storage consumption, for example, approximately
1.33GB for the Bicycle scene in MipNeRF360 [5] dataset. We credit
this inefficiency to the redundancy in primitives. However, de-
termining which primitives are redundant is challenging without
establishing relationships between them. Therefore, we introduce
the graph signal processing theory and construct a graph based on
Gaussian primitives to efficiently prune redundant primitives.

3.2.1 Graph Signal Processing Preliminaries. Graph shift. We de-
note a weighted graph by G = (V, 𝐴), where V is the set of nodes
{𝑣0, 𝑣1, . . . , 𝑣𝑁−1}, 𝑁 = |V| and 𝐴 ∈ C𝑁×𝑁 is the graph shift, or
the weighted adjacency matrix. Graph shift reflects the connection
between the nodes using edge weight which is a quantitative de-
scription of primitive relationship. When a graph shift acts on a
graph signal, it can represent the diffusion of the graph signal. In
this work, we build the graph shift to model the spatial relationship
among Gaussian primitives. A graph shift is usually normalized for
proper scaling, ensuring | |𝐴| | = 1.
Graph signal. Given a graph 𝐺 = (V, 𝐴), a graph signal on this
graph can be seen as a map assigning each node 𝑣𝑖 with a value
𝑥𝑖 ∈ C. If the order of the nodes is fixed, then the graph signal is
defined as a𝑁 dimensional vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ). In this work,
the input graph node is Gaussian primitives central position 𝑥 ∈ R3,
the graph signal is the Euclidean distance between primitives.
Graph Fourier Transform. A Fourier transform corresponds to
the expansion of a signal using a set of bases. When performing
graph Fourier transform, the bases are the eigenbasis of the graph

shift. For simplicity, assume that 𝐴 has a complete eigenbasis and
the spectral decomposition of 𝐴 is 𝐴 = 𝑉Λ𝑉 −1 [47], where the
eigenbasis of 𝐴 form the columns of matrix 𝑉 , and Λ ∈ C𝑁×𝑁 is
the diagonal matrix of eigenvalues.

3.2.2 Graph Construction. Given a set of Gaussian Primitives 𝑃 ,
we want to construct a nearest neighbor graph. The adjacent matrix
𝑊 of the graph is defined as:

𝑊𝑖 𝑗 =

{
exp(− | |𝑥𝑖−𝑥 𝑗 | |22

2∗𝜎2 ), | |𝑥𝑖 − 𝑥 𝑗 | |22 < 𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3)

where 𝑥𝑖 and 𝑥 𝑗 are central points in 𝑃 , 𝜏 is a hyperparameter,
chosen as ten times of the minimum nearest neighborhood distance
between primitives experimentally, and 𝜎 is the variance of the
distance matrix. Equation 3 demonstrates that when the Euclidean
distance of two Gaussian primitives is smaller than a threshold 𝜏 ,
the two primitives are connected by the graph edge, whose weight
corresponds to geometric information between two primitives in
Gaussian fields. A weighted degree matrix 𝐷 is a diagonal matrix
𝐷𝑖,𝑖 =

∑
𝑗𝑊𝑖, 𝑗 , reflecting the density around the 𝑖th primitive.

3.2.3 Graph Filtering and Sampling. We propose a band-limited
graph filter, combinedwith a high-frequency filter and low-frequency
filter (conceptually shown in Fig. 3), to catch the detailed informa-
tion and general information of the scene. Specifically, the input
graph signal 𝑥 represents the central of Gaussian primitives.

A simple design of a high-pass filter is a Haar-like one:

H𝐻 = 𝐼 −𝐴 = 𝑉 (𝐼 − Λ)𝑉 −1, (4)

where 𝐴 is the graph shift and 𝑉 and Λ are the corresponding
eigenvectors and eigenvalues in diagonal form. Denote that all
eigenvalues are 𝜆𝑖 , 𝑖 ∈ 0, 1, ..., 𝑁 − 1. We order 𝜆𝑖 in descending
order, thus we have 1 − 𝜆𝑖 ≤ 1 − 𝜆𝑖+1 and 𝜆0 = 1. This indicates
low-frequency response attenuates and high-frequency response
amplifies [10]. Similarly, a Haar-like low-pass graph filter is:
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H𝐿 = 𝐼 + 𝐴

𝜆0
= 𝑉 (𝐼 + Λ/𝜆0)𝑉 −1 . (5)

Then we have the response of the input signal 𝑥 corresponding
to filters and the response magnitude could be written as:

𝜋𝑖 = | |𝑓𝑖 | |22 . (6)

Controlling bandwidth with 𝛾 . In implementation, we prune
the abundant primitives according to the response magnitude of the
high-pass filter. We sample total 𝑘% of all primitives, among where
𝛾 high-frequency primitives and (1 − 𝛾) low-frequency primitives
by querying the top𝛾 highest magnitude and the top (1−𝛾)% lowest
magnitude respectively. The value of 𝛾 is ablated in Section 4.4 and
we used 𝛾 = 0.5 in main experiments to maintain consistency.

3.3 Neural Compensation
Although our graph-based pruning effectively removes unneces-
sary primitives while retaining important ones, there is inevitably
a decrease in rendering quality for large pruning ratio. To address
this, we employ a neural compensation network to model the rela-
tionship between primitives in the 2D domain.

To allow neural compensation after rasterization, we need to ren-
der the 3D Gaussian primitives into neural images in a differentiable
manner. Specifically, we leverage the differentiable 3D Gaussian
renderer from 3DGS [29] and switch from RGB rendering to feature
rendering. The center of the Gaussian primitive is projected using
the standard point rendering method:

𝑥img = 𝐾𝑐 ((𝑇𝑐𝑥)/(𝑇𝑐𝑥)𝑧), (7)

where𝐾𝑐 and𝑇𝑐 are the intrinsic and extrinsic parameters of camera
𝐶 , and 𝑥img indicates the pixel coordinates in neural image. The
covariance Σ𝑓 in neural image space could be formulated as:

Σ𝑓 = 𝐽𝑇𝑐Σ𝑇
𝑇
𝑐 𝐽

𝑇 , (8)

where the 𝐽 is the approximated Jacobian of the projective trans-
formation. The neural image is computed by:

𝑓 =
∑︁
𝑖

𝑐𝑖𝛽𝑖

𝑖−1∏
𝑗=1

(1 − 𝛽 𝑗 ), (9)

where 𝑐𝑖 is a feature vector instead of SHs in the original 3DGS [29]
and 𝛽 is the result of neural image covariance Σ𝑓 multiplied with
the opacity 𝛼 of the Gaussian primitive.

In this manner, instead of straightforwardly rendering the RGB
image like 3DGS, we obtain a neural image through the differen-
tiable rasterizer for 3D Gaussians, which projects feature of 3D
Gaussian primitives to 2D neural image 𝐹 . Then, we utilize a light-
weight neural network Φ to compensate for the quality drop post
spectral pruning. This network Φ consists of a four-layer fully
convolutional U-Net with skip-connections, which aggregates in-
formation from different primitives. Downsampling is performed
using average pooling, and the images are upsampled using bilinear
interpolation. The network takes the rasterized neural images as
input and outputs the RGB images.

𝐼 = Φ(𝐹 ) (10)

The overall optimization is based on the difference between
the rendered images and ground truth images in the dataset. The

compensation network and 3D Gaussian primitives are optimized
simultaneously during training. The loss function is a combination
of L1 and a D-SSIM loss:

L = 𝜆1L1 + 𝜆2LSSIM

= 𝜆1 |𝐼 − 𝐼 | + 𝜆2 (1 − SSIM(𝐼 , 𝐼 ))
(11)

3.4 Continuous Pruning as a Strategy
In addition to the training-then-pruning strategy described in Sec.
3.2, we further explore a strategy that integrates continuous prun-
ing into training. Unlike training-then-pruning, which prunes out
primitives from a fully densified Gaussian field, continuous pruning
involves periodically removing a specific number or percentage of
primitives at pre-defined intervals throughout the training process.
This approach aims to consistently control the maximum number
of primitives while training the 3D Gaussian field, thereby lowering
peak memory requirements during training and allowing training
on GPU devices with low GPU memory.

Empirically, the advantage of lower peak memory comes at the
cost of weaker control of final memory footprint. For instance,
if we prune 20% of the primitives every 2000 iterations, the final
converged state of the 3D Gaussian field might deviate from the
expected 20% reduction. Additionally, this variance can differ across
different scenes, complicating the predictability and consistency
of the pruning effects. Therefore, we treat the continuous pruning
strategy as an alternative when needed.

4 EXPERIMENTS
4.1 Implemention Details
We implement SUNDAE in Python using the PyTorch framework.
The differential rasterizer component is based on the CUDA code-
base, as delineated in 3DGS [29]. Additionally, for the construction
of graphs and the pruning of primitives, we employed a C++ imple-
mentation, accelerated with the Numba library for computational
efficiency. All training and testing processes were conducted on a
single NVIDIA RTX 3090.

Our algorithm was rigorously tested across three publicly avail-
able datasets. Specifically, we evaluated its performance on all seven
scenes of the MipNeRF360 dataset, as presented in [5]. Moreover,
SUNDAE was tested on two scenes from the Tanks & Temples [30]
and two scenes from the Deep Blending [22], adhering to the bench-
mark criteria established in [29]. The selected scenes encompass
a diverse range of capture styles, including both bounded indoor
settings and large unbounded outdoor environments.

4.2 Quantitative Results
EvaluationMetrics. In our evaluation, we employ the most widely
recognizedmetrics in the field, PSNR, SSIM, and LPIPS. Additionally,
the Frames Per Second (FPS) performance of SUNDAE was assessed
by the average rendering time computed across all scenes. Memory
was evaluated by calculating the average size of checkpoints in
each of the scenes, which is the sum of 3D Gaussian fields and
neural compensation module. We adopt the train-test split for the
MipNeRF360 dataset suggested by [5], using every 8th photo for
the test, and for the rest two datasets, we followed the setting of
[29]. The tested results are shown in Tab. 1.
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Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Method/Metric PSNR↑ SSIM↑ LPIPS↓ FPS Mem PSNR↑ SSIM↑ LPIPS↓ FPS Mem PSNR↑ SSIM↑ LPIPS↓ FPS Mem
Plenoxels 23.08 0.626 0.463 6.79 2.1GB 21.08 0.719 0.379 13.0 2.3GB 23.06 0.795 0.510 11.2 2.7GB
INGP-Base 25.30 0.671 0.371 11.7 13MB 21.72 0.723 0.330 17.1 13MB 23.62 0.797 0.423 3.26 13MB
INGP-Big 25.59 0.699 0.331 9.43 48MB 21.92 0.745 0.305 14.4 48MB 24.96 0.817 0.390 2.79 48MB
M-NeRF360 27.69 0.792 0.237 0.06 8.6MB 22.22 0.759 0.257 0.14 8.6MB 29.40 0.901 0.245 0.09 8.6MB
3DGS-7K 25.60 0.770 0.279 160 523MB 21.20 0.767 0.280 197 270MB 27.78 0.875 0.317 172 386MB
3DGS-30K 27.21 0.815 0.214 134 734MB 23.14 0.841 0.183 154 411MB 29.41 0.903 0.243 137 676MB
Ours-1% 24.70 0.716 0.375 171 38MB 20.49 0.703 0.375 127 33MB 26.57 0.861 0.355 165 36MB
Ours-10% 26.80 0.805 0.264 145 104MB 22.50 0.787 0.282 122 64MB 28.65 0.892 0.287 163 86MB
Ours-30% 27.24 0.826 0.228 109 279MB 23.46 0.817 0.242 116 148MB 29.40 0.899 0.248 156 203MB
Ours-50% 27.31 0.827 0.213 88 393MB 23.70 0.830 0.219 92 228MB 28.86 0.900 0.242 155 312MB

Table 1: Quatitative evaluation of out method with different downsampling rate compared to previous work over three datasets.

(d) 100% High Pass(a) Random (c) 50% Low & 50% High Pass  (b) 100% Low Pass

Figure 4: The pruned Gaussian primitive centers with different pruning strategy.

Tradeoff of rendering quality, rendering time and stor-
age. Considering the MipNeRF360 dataset, Mip-NeRF360 method
achieved the highest image fidelity with a PSNR of 27.69 and SSIM
of 0.792, but had a low FPS of 0.06. Conversely, the 3DGS-7K and
3DGS-30K methods showed high FPS rates of 160 and 134, respec-
tively, though with significant memory requirements (523MB for
7K and 734MB for 30K). Our method, particularly at 30% and 50%
sampling rates, struck a balance between quality and efficiency,
ranking within the top three in performance metrics while main-
taining rapid rendering speeds and manageable memory usage (88
FPS at 393MB for 50%). The SUNDAE variant (10% and 1%) also
displayed remarkable efficiency, achieving a PSNR of 26.80 at 145
FPS with only 104 MB memory, and 24.70 PSNR at 171 FPS using
38 MB. This efficiency suggests that our primitive graph and neural
compensation module adeptly model the relationships among prim-
itives in 3D and 2D domains, and our pruning strategy effectively
retains the primary information of the scenes. These results indicate
that SUNDAE can represent scenes in a more compact manner.

As presented in Table 1, our method also shows start-of-the-art
performance in other datasets by using only around 50% or even
30% of memory. At a very low sampling rate of 1%, our method
remains competitive, closely aligning with the performance of es-
tablished approaches such as Instant-NGP [40] and Plenoxels [19],
with minimal compromise in quality. This performance balance
highlights the robustness of our spectral pruning and neural com-
pensation techniques in managing Gaussian primitive relationships,
thus there’s not much decline of pruning abundant primitives.

4.3 Qualitative Results
The qualitative results can be seen in Fig. 5. We compare the qual-
itative results of our SUNDAE of 1% and 10% sampling rate with
3DGS [29] and InstantNGP [40]. The qualitative results show that
SUNDAE could achieve a similar quality of novel view synthesis
using only 10% or even 1% memory consumption. The graph could

successfully build the relationship of primitives and the neural
compensation head effectively maintains rendering quality. Inter-
estingly, we could see from the 4-th row and the last row of Fig. 5,
that the spectral pruning could remove the floater near the camera.

Band visualization. As seen in Fig. 4, we visualize the Gaussian
primitive centers post-pruning. Results show that the low-pass
part could capture the background or smoothed area more, while
the high-pass filter better captures the high-frequency details. The
combined filter is proper to capture the high-frequency detailed
object-level information as well as reserve the background points.

4.4 Ablation Study
Band-limited ratio of Graph-based pruning. The band-limited
filter’s ratio is represented by 𝛾 . Specifically, we sample 𝑛 primitives
during graph-based pruning, comprising 𝑛 ×𝛾 high-pass primitives
and 𝑛 × (1 − 𝛾) low-pass primitives, as detailed in Sec. 3.2.3. As
demonstrated in Figure 7, we retain 1% of primitives and vary the
filter’s ratio 𝛾 . The results indicate that 𝛾 has a significant impact
on the rendering quality. Notably, a 𝛾 value of 50% delivers the most
favorable outcomes, while a disproportionate emphasis on either
low-frequency or high-frequency signals leads to a deterioration in
quality. This highlights the advantage of spectral pruning method
as it naturally preserves important high-frequency details and low-
frequency background using a 50% ratio.

The compensation performance of the network. To verify
the effectiveness of our neural compensation module, we conducted
experiments with and without neural compensation at different
sampling rates. As indicated in Table 3, across all sampling rates,
employing neural compensation leads to improved performance
compared to not using it. This is further supported by the visual-
ization results depicted in Fig. 6. These findings demonstrate the
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Figure 5: Qualitative results of our novel view synthesis. The scenes are, from the top down: Bicycle, Counter, Garden, Kitchen,
Room and Stump from the Mip-NeRF360 dataset; DrJohnson, Playroom from the Deep Blending dataset and Train from
Tanks&Temples. Non-obvious differences in quality highlighted by arrows/insets.
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(a) Without Compensation

(c) Without Compensation

(b) With Compensation

(d) With Compensation

Figure 6: Visualization with and without neural compensa-
tion.
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Figure 7: Ablations experiment on the ratio 𝛾 of the band-
limited filter of graph based pruning.

compensatory capability of this module in mitigating the perfor-
mance drops caused by spectral pruning. It is also evidenced that
the relationship between primitives are well modeled.

Dataset Bicycle Garden
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
1% + neural comp 23.23 0.579 0.449 24.42 0.651 0.399
1% w/o. neural comp 22.79 0.542 0.466 24.01 0.614 0.422
10% + neural comp 24.36 0.692 0.321 26.78 0.811 0.218
10% w/o. neural comp 23.93 0.654 0.344 26.18 0.778 0.251
30% + neural comp 24.40 0.714 0.271 27.36 0.843 0.150
30% w/o. neural comp 24.05 0.710 0.275 26.91 0.826 0.175

Table 2: Ablations of neural compensation.

Neural Compensation Module Size. Tab. 3 below shows that
increasing the network size does not necessarily enhance rendering
quality, aligning with findings from ADOP, indicating a similar
trend. We adopt 4-layer UNet of 30MB as the default setting to best
balance the quality and the memory.

Sample More Points. As seen in Tab. 1 , preserving 50% of
primitives outperformed the original 3DGS in rendering quality.

Dataset Bicycle Garden
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
10% w/o. neural comp 23.93 0.654 0.344 26.18 0.778 0.251
10% + small NN (7.2MB) 24.01 0.678 0.315 26.83 0.820 0.207
10% + regular NN (30MB) 24.36 0.692 0.321 26.98 0.820 0.202
10% + large NN (120MB) 24.13 0.683 0.320 26.86 0.820 0.201

Table 3: Ablations of neural compensation module size.

We additional test keeping 80% and keeping all primitives to test
how sample rates affect the final results as seen in Tab. 4. Further,
keeping 80% of primitives improves rendering quality, as indicated
by LPIPS, but showed minimal visual enhancement per PSNR and
SSIM. Keeping all primitives (and training more epochs) could not
further improve the quality, which also shows the importance of
modelling the relationship of primitives. Without efficient mod-
elling the relationship, more primitives makes the model hard
to convergence and abundant primitives are contributing
negatively to the scene representation. In addtion, our goal
is to balance rendering quality with storage efficiency; however,
increasing storage to 620 MB for 80% primitives yields only slight
quality improvements, diminishing storage efficiency.

Methods PSNR SSIM LPIPS
3DGS 27.21 0.815 0.214
Ours-80% 27.73 0.835 0.185
Ours-100% 27.13 0.821 0.193

Table 4: Ablations of sampling rate on the dataset MipN-
eRF360.

Continuous Pruning. In Sec. 3.4, we propose a continuous
pruning strategy. We tested it on Bicycle and Counter scenes in
MipNeRF360 dataset according to different pruning interval iter-
ations and pruning rate. As seen in Tab. 5, points are the number
of primitives after training, and ratio is the rough ratio of number
of primitives and the original 3DGS after training. Results show
that this strategy could reduce the peak memory, but it is hard
to control the final memory (reflected by points and ratio). And it
would cause a quality loss for its parameter sensitivity. So we justify
our training-then-pruning strategy but still provide the continuous
pruning strategy as an alternative in our open-source toolbox.

Table 5: Evaluation for different pruning strategies on MipN-
eRF360 dataset.

Pruning Strategy Scene PSNR SSIM LPIPS Points Ratio Peak Memory

Prune every 2k [70%] Bicycle 24.50 0.730 0.230 531w 70% 7032MB
Prune every 3k [70%] Bicycle 24.47 0.730 0.224 673w 80% 8301MB

Training-then-pruning [50%] Bicycle 24.46 0.719 0.251 421w 50% 18036MB
Prune every 2k [50%] Bicycle 24.35 0.723 0.243 412w 50% 6386MB
Prune every 2k [30%] Bicycle 24.17 0.699 0.264 272w 30% 6338MB
Prune every 2k [10%] Bicycle 23.52 0.622 0.363 156w 20% 5056MB

Training-then-pruning [50%] Counter 28.10 0.882 0.192 63.4w 50% 3730MB
Prune every 2k [30%] Counter 27.56 0.863 0.160 62.2w 50% 1978MB
Prune every 2k [10%] Counter 27.00 0.838 0.194 42.1w 30% 1805MB
Prune every 2k [1%] Counter 24.54 0.777 0.194 15.7w 10% 1542MB

4.5 Efficiency Evaluation
For details on training time, CUDA memory, rendering FPS, and
ROM storage, refer to Tab. 6. Notably, ‘Ours-50%’ achieves state-of-
the-art rendering quality with an acceptable training duration of
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1.41 hours, while achieving real-time rendering, and significantly
lowering both CUDA memory usage during training and ROM
storage.

Methods Training Time FPS CUDA Mem ROM Storage
3DGS 37.98min 134 10.53 GB 1.33 GB
Ours-1% 51.99min 171 2451 MB 43.6 MB
Ours-10% 1.10h 145 3169 MB 141 MB
Ours-30% 1.26h 109 4790 MB 447 MB
Ours-50% 1.41h 88 6426 MB 710 MB

Table 6: Evaluation metrics on the bicycle scene of MipN-
eRF360 dataset.

5 CONCLUSION
In this paper, we present a novel method of spectrally pruned Gauss-
ian fields (SUNDAE) with neural compensation, that robustly and
efficiently models the relationship between Gaussian primitives by
introducing the graph signal processing framework and mix the in-
formation from different primitives to compensate the information
loss caused by pruning. We use the spatial information between
Gaussian primitives to construct a graph to model the relationship
and spectrally prune the less important ones. A lightweight neural
network is utilized to compensate for the inevitable rendering qual-
ity loss post-pruning. Experimental results show that SUNDAE well
maintains the efficency of 3DGS while being much more smaller
on a wide spectrum.
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