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GaussianGrasper: 3D Language Gaussian Splatting
for Open-Vocabulary Robotic Grasping
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Abstract—Constructing a 3D scene capable of accommodating
open-ended language queries, is a pivotal pursuit in the domain
of robotics, which facilitates robots in executing object manip-
ulations based on human language directives. To achieve this,
some research efforts have been dedicated to the development of
language-embedded implicit fields. However, implicit fields (e.g.
NeRF) encounter limitations due to the necessity of taking images
from a larger number of viewpoints for reconstruction, coupled
with their inherent inefficiencies in inference. Furthermore, these
methods directly distill patch-level 2D features, leading to am-
biguous segmentation boundaries. Thus, we present the Gaussian-
Grasper, which uses 3D Gaussian Splatting (3DGS) to explicitly
represent the scene as a set of Gaussian primitives and is capable of
real-time rendering. Our approach takes RGB-D images from lim-
ited viewpoints as input and uses an Efficient Feature Distillation
(EFD) module that employs contrastive learning to efficiently distill
2D language embeddings and constraint consistency of feature em-
beddings. With the reconstructed geometry of the Gaussian field,
our method enables the pre-trained grasping model to generate
collision-free grasp pose candidates. Furthermore, we propose a
normal-guided grasp module to select the best grasp pose. Through
comprehensive real-world experiments, we demonstrate that Gaus-
sianGrasper enables robots to accurately locate and grasp objects
according to language instructions, providing a new solution for
language-guided grasping tasks.

Index Terms—Language-guided robotic manipulation, 3D Gau-
ssian splatting, language feature field.
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I. INTRODUCTION

R ECENTLY, there has been an increasing scholarly focus on
language-guided robotic manipulation due to its vast po-

tential in facilitating human-robot interaction, enabling robotic
home services, and enhancing flexible manufacturing. Imagine
that a robot is asked to pick up the water cup in a cluttered,
unstructured environment, it needs to (1) locate the water cup via
responding to language description; (2) be aware of the geometry
to execute a stable grasp. In this process, understanding the
diverse objects with different shapes and material properties in
the open world is the pivotal challenge.

Although many works have proposed various solutions, exist-
ing capabilities of scene understanding are insufficient to afford
language-guided manipulation. Most existing works are based
on 2D images [1], [2], [3], [4] which are efficient but have
limitations for robotic manipulation as robots can not easily infer
visual occlusion and spatial relation from multi-view misaligned
images.

To obtain precise 3D positions for robotic manipulation,
recent works have focused on 3D representations. A straight-
forward approach is leveraging 2D visual models [5], [6], [7] to
extract semantics and then fuse the 2D semantics into 3D. How-
ever, this fusion strategy suffers from semantic inconsistency
in 3D, as the visual model’s semantic features are inconsistent
across multi-views.

Other methods [8], [9], [10], [11], [12], [13] that use 3D
backbone to extract features and are supervised by 3D annotation
or manipulation feedback can effectively enhance the 3D scene
understanding and skill learning. However, these methods en-
counter challenges in data acquisition and annotation. Recently,
distilled feature fields (DFFs) [14], [15], [16] which recon-
struct 3D feature fields from 2D images via implicit represen-
tation were introduced. Based on 2D-to-3D distillation, recent
works [17], [18] have made impressive progress in improving
3D scene understanding and enabling robots to interact with
the physical world according to language instructions. However,
DFFs can not be inflexibly applied for robotics manipulation as
most of these methods suffer from (1) imprecise localization
as these methods extract patch-level features, resulting in am-
biguous boundaries; (2) high costs of collecting dense training
views (e.g. 50 views in F3RM [17]); (3) slow inference speed,
hindering robots from responding to language instructions in
time and (4) weak ability to cope with scene changes caused by
manipulation.

To tackle problems, we introduce GaussianGrasper, an
open-world robotic manipulation method based on 3D Gaussian
Splatting (3DGS) [19], which models the 3D scene as a set of
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Fig. 1. We present a comparison between our method, 2D feature (extracted
by SAM and CLIP) fusion, and LERF. When given the language query
“hamburger”, the features extracted by SAM and CLIP exhibit inconsistencies
between the two viewpoints, and LERF lacks clear segmentation boundaries.
Consequently, they both suffer from imprecise 3D localization, as depicted by
the yellow and purple 3D bounding boxes. In contrast, our method reconstructs
a consistent feature field and achieves more precise 3D localization.

3D Gaussian primitives. As an explicit representation, 3DGS
has faster rendering, speeding up the response to language
instructions. Besides, it’s easier and faster to edit the scene via
operating Gaussian primitives, enabling the scene the ability to
update dynamically after each manipulation. Our insight is that
we (1) reconstruct 3D feature fields via feature distillation to sup-
port language-guided localization; (2) render depth and surface
normal to provide detailed 3D geometry, enabling the generation
of feasible grasping poses; (3) operate Gaussian primitives and
fine-tune 3DGS to update the changed scene. Fig. 1 shows
the performance comparison between other methods and our
proposed method.

More specifically, our method enables language-guided ma-
nipulation via the following steps: (1) Initialization: we scan
RGB-D images of a few viewpoints to initialize the 3DGS,
reducing the cost of data collection. (2) Feature field recon-
struction: we propose an efficient feature distillation (EFD)
module that employs SAM [5] and CLIP [6] to extract dense and
shape-aware 2D descriptors and leverage contrastive learning
to efficiently optimize the distilled features. (3) Localization
and grasp: we use open-vocabulary querying to locate the target
object and use a pre-trained grasping model to provide a set of
grasp pose candidates where rendered normal is used to select
the most feasible grasp pose based on Force-closure theory.
(4) Scene updating: After manipulation, we update the scene
by operating corresponding Gaussian primitives and fine-tuning
3DGS with images from fewer views.

In summary, the contributions of this letter are as follows:
� We introduce GaussianGrasper, a robot manipulation

system implemented by a 3D Gaussian field endowed
with consistent open-vocabulary semantics and accurate
geometry to support open-world manipulation tasks guided
by language instructions.

� We propose EFD that leverages contrastive learning to
efficiently distill CLIP features and augment feature fields
with SAM segmentation prior, addressing computational
expense and boundary ambiguity challenges.

� We propose a normal-guided grasp module that uses ren-
dered normal to select the best grasp pose from generated
grasp pose candidates.

� We demonstrate GaussianGrasper’s capability of
language-guided manipulation tasks in multiple real-world
tabletop scenes and common objects.

II. RELATED WORK

A. Grasp Pose Detection

Grasp pose detection is the pivotal part of robot grasping,
which plays a critical role in enabling the robot to interact with
objects in the physical world. Previous 3-DoF Grasping methods
treated the grasping task as 2D pose detection [20], [21], [22],
[23], [24]. They define the grasp pose as a fixed-height oriented
rectangle and predict the orientation and the width of the rectan-
gle. However, their predicted grasp poses are limited to 3-DoF
due to the lack of 3D geometry. To allow robots to plan higher
dexterous grasps, extensive works focus on 6-DoF grasping
which uses depth to augment the grasp pose detection [25], [26]
or leverage point cloud as input to provide local geometry [27],
[28], [29], [30], [31]. These methods exhibit a high success rate
when the depth is accurate but suffer from performance drops
when encountering photometrically challenging objects such as
transparent objects. To further improve the performance, some
work fuses RGB with depth [32], [33], [34] as RGB can alleviate
the depth-missing problem.

In this letter, we use the RGB-D based method to generate
grasp poses. To achieve stable grasp, we further explicitly utilize
Force-closure theory [35] to enhance grasp pose detection where
estimated normal is used to filter out unfeasible grasp poses
(more details in Normal-guided grasp of Section III-C3).

B. 3D Positioning for Robotic Grasping

A number of recent work integrate 2D foundation models with
3D feature fields to obtain 3D open-vocabulary feature repre-
sentation via re-projection [36], [37] or feature distillation [14],
[16], [38], [39], [40]. Based on the 3D feature representation,
these methods achieve 3D positioning by responding to language
instructions.

For robotic grasping, recent works like F3RM [17] and LERF-
TOGO [18] leverage feature distillation via neural rendering to
reconstruct the 3D feature field as the 3D feature representa-
tion. Then, the grasping poses are generated after localization.
However, these methods need images from many viewpoints
as input. As an explicit representation, SparseDFF [41] re-
projects 2D features to 3D and leverages fusion strategy to
optimize the 3D feature representation, leading to a significant
reduction in usage of the number of viewpoints. However, ex-
plicit representation is not efficient for carrying high-dimension
language features due to memory usage and computation
time.

In our pipeline, we achieve 3D positioning by querying the 3D
feature field. Different from the methods above, we propose an
efficient feature distillation module based on explicit 3D Gaus-
sians representation which uses segmentation priors provided
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Fig. 2. The architecture of our proposed method. (a) Is our proposed pipeline where we scan multi-view RGBD images for initialization and reconstruct 3D
Gaussian field via feature distillation and geometry reconstruction. Subsequently, given a language instruction, we locate the target object via open-vocabulary
querying. Grasp pose candidates for grasping the target object are then generated by a pre-trained grasping model. Finally, a normal-guided module that uses surface
normal to filter out unfeasible candidates is proposed to select the best grasp pose. (b) Elaborates on EFD where we leverage contrastive learning to constrain
rendered latent feature L and only sample a few pixels to recover features to the CLIP space via an MLP. Then, the recovered features are used to calculate
distillation loss with the CLIP features. (c) Shows the normal-guided grasp that utilizes Force-closure theory to filter out unfeasible grasp poses.

by SAM to speed up feature field reconstruction and reduce the
usage of memory (more details in Section III-B).

III. METHODOLOGY

Problem Formulation: Given a natural language instruction
from the human, the goal of our method is to locate the target
object accurately and pick it up stably based on a collection of
multi-view RGB-D images input.

Pipeline: The proposed pipeline is shown in Fig. 2(a) where
our method (1) collects multi-view RGB-D images as input
to initialize 3D Gaussian field; (2) reconstructs 3D feature
field via efficient feature distillation module and (3) achieves
language-guided manipulation. Specifically, we first introduce
how to initialize 3DGS and the differentiable rasterizer of 3DGS
in Section III-A. Next, we elaborate on the EFD module in Sec-
tion III-B. Finally, we introduce how to achieve language-guided
manipulation in detail in Section III-C.

A. Preliminaries: 3D Gaussian Splatting

1) Gaussian Primitive Initialization: 3DGS uses the sparse
point cloud obtained by Structure from Motion (SfM) [42] as

initialization. In our pipeline, to reduce the viewpoints and speed
up, we employ multi-view depth to re-project RGB images into
3D points and use camera extrinsics to convert all points to the
world coordinate to initialize the Gaussian field.

2) Differentiable Rasterizer for 3D Gaussians: 3DGS ren-
ders the Gaussian primitives into images in a differentiable
manner to optimize the parameters. Given a set of 3D Gaus-
sian primitives G = {gi | i = 1, 2, 3, .., n}, each 3D Gaussian
primitive gi is first projected onto the corresponding 2D plane
and is then sorted based on its depth di from the viewpoint plane.
The RGB image is rendered by the following formula:

C(u) =
∑
i

ciαi

i−1∏
j=1

(1− αj) (1)

where ci is a feature vector represented by spherical harmonics
(SH) and αi is obtained by multiplying Gaussian weight with
opacity α associated to Gaussian primitives. j represents the jth

Gaussian primitive among the i-1 Gaussian primitives with a
depth smaller than the ith Gaussian primitive.
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B. Efficient Feature Distillation

We reconstruct 3D open-vocabulary feature field via extract-
ing dense CLIP features and efficiently distilling them into 3D,
based on 3DGS. The open-vocabulary reconstruction enables
the scene to respond to natural language instructions.

1) Instance-Level Segmentation Prior and Open-Vocabulary
Features: To extract dense and shape-aware open-vocabulary
features, we first use SAM to produce a set of instance-level
masks. Then, we leverage CLIP to obtain open-vocabulary fea-
tures for each mask. Concretely, we process the input images
through SAM to obtain a set of mask proposals and correspond-
ing scores. Based on these scores, a non-maximum suppression
strategy [43] is then implemented to filter superfluous masks.
The resultant filtered set of masks constitutes a segmentation
map of the image, representing instance-level priors. After fil-
tration, we process each valid mask-aligned image region into
the CLIP model to extract open-vocabulary features. Finally,
we incorporate CLIP features of all masks into a feature map,
referred to as F .

2) Open-Vocabulary Feature Distillation: We propose a
novel and efficient open-vocabulary feature distillation method
that starts with enhancing each 3D Gaussian primitive with em-
bedded open-vocabulary feature. As an explicit representation,
a 3D Gaussian field can be composed of millions of primitives.
Directly incorporating high-dimensional CLIP features (over
500 dimensions) into all primitives will result in unacceptable
memory costs and computation time. Therefore, instead of
equipping Gaussian primitives with high-dimension CLIP fea-
tures, we initialize all Gaussian primitives with low-dimension
latent feature embedding l. Then, we employ a feature rasterizer
to render the feature map L:

L(u) =
∑
i

liαi

i−1∏
j=1

(1− αj) (2)

where li is the latent feature embedding of ith 3D gaussian prim-
itives andL(u) represents the rendered latent feature embedding
at pixel u.

To distill the 2D open-vocabulary feature to 3D field, we
need to (1) recover the dimension of L to that of F and (2)
minimize the feature distance between the recovered L and the
F . However, high-dimensional vector computation for dense
feature maps leads to a catastrophic increase in computation
time and memory usage. To tackle this problem, we pro-
pose a contrastive-learning-based distillation strategy, as shown
in Fig. 2(b). Specifically, having instance-level segmentation
masks extracted by SAM, we impose constraints for the con-
sistency of each pixel’s rendered feature within the same mask.
To ensure efficiency, we randomly sample some pixel pairs
within each mask and minimize the distance of latent features
between pixels in each pair. The number of pairs for each mask
is proportion to the mask’s area and the number of total pairs n
is fixed. We use the average feature distances between all pairs
as contrastive loss, written as:

Lcontr. = 1− 1

n

n∑
i=1

L(ui) · L(vi) (3)

where ui and vi are pixels in the ith sampled pair and L(ui)
and L(vi) are the rendered feature embedding of pixel ui and
vi. As the contrastive loss homogenizes the features within each

mask, we only need to recover latent features of per mask to the
CLIP space and subsequently minimize the distance between
the recovered feature and the CLIP feature. In practice, we
randomly sample the same number of pixels within each mask,
whose latent features are then recovered via a trainable decoder
Ψ composed of two fully connected layers. We calculate the
distillation loss between the recovered feature and the CLIP
feature of all sampled k pixels, defined as:

Ldistill = 1− 1

k

k∑
i=1

Ψ(L(i)) · F (i) (4)

By enhancing the low-dimension latent feature of the 3D
Gaussian primitives and using contrastive learning which lever-
ages the segmentation prior derived from SAM, our method
provides a powerful and efficient solution for reconstructing 3D
open-vocabulary representation.

C. Language-Guided Robotic Manipulation

We use the reconstructed feature field to conduct robotic ma-
nipulation. Given a language instruction, our method begins with
employing open-vocabulary queries to locate the target object.
Subsequently, we render the depth and normals of 3D Gaussian
primitives to obtain the object’s detailed geometry. Then, a point
cloud-based grasping module is used to generate grasp poses
and the rendered normal is used to filter out unfeasible ones.
After manipulating objects, we quickly update the scene using
observations from fewer viewpoints.

1) Open-Vocabulary Querying: As our reconstructed feature
field is aligned with natural language, we can locate the object
described by language instructions via open-vocabulary query-
ing. We first follow the approach of LERF [16] to compute the
relevance score s for each textual query:

s = min
i

exp(Ψ(L) · T query)

exp(Ψ(L) · T query) + exp(Ψ(L) · T canon
i )

(5)

where T query is the CLIP embedding of the text query and
T canon
i is the CLIP embeddings of a pre-defined canonical

phrase chosen from “object”, “things”, “stuff”, and “texture”.
As a result, for each textual query, we obtain a relevance

heatmap where the points with relevance scores below a pre-
determined threshold will be filtered out. Thus, the remaining
region forms a mask for predicting the queried object.

2) Geometry Restruction: To obtain dense point cloud repre-
sentations of objects and surface normal which is closely related
to robotic grasping, we render depth and surface normal to
multiple viewpoints.

Depth rendering: Similar to the rendering of RGB, we com-
pute the depth value for each pixel using the rasterizer:

D(u) =
∑
i

diαi

i−1∏
j=1

(1− αj) (6)

where D(u) indicates the rendered depth map at pixel u.
We use the depth map obtained from the depth camera for the

corresponding viewpoint to supervise the rendered depth map
where we calculate the L1 loss:

Ldepth =
1

m

m∑
i=1

|D̂(i)−D(i)| (7)
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where D̂ is the depth map obtained from the depth camera and
m is the number of pixels with valid depth value.

Normal rendering: As surface normals are directional vectors
that should exhibit rotational equivariance, normals cannot be
rendered as semantic features. Therefore, we follow [44], [45]
that use the shortest axis direction of the 3D Gaussian primitives
to serve as surface normal. As a result, the normals are geometric
properties of Gaussian primitives, related to their orientations.
We render the normal map by using the rasterizer:

N(u) =
∑
i

niαi

i−1∏
j=1

(1− αj) (8)

where N(u) indicates the rendered surface normal map at pixel
u and ni is the normal of the ith 3D Gaussian primitive.

The rendered normal map represents the per-pixel surface
normal in the robot base coordinate. We use a Sobel-like operator
to compute the normals for each pixel in the acquired depth
map and transform the calculated normals from the camera
coordinate to the robot base coordinate. After normalizing all
normal maps to unit vectors, we supervise the rendered normals
within the valid depth region:

Lnormal =
1

m

m∑
i=1

((
N̂(i)−N(i)

)2

+ 1− N̂(i) ·N(i)

)

(9)
3) Feasible Grasp Pose Generation: After obtaining the lo-

calization and geometry of the object, we (1) employ a grasp
detection method to propose initial grasp poses and (2) utilize our
rendered normal to augment the grasp pose proposals according
to the force closure theory.

Grasp pose generation: In our work, we employ the Any-
Grasp [34], the state-of-the-art grasping model, which takes
colorful point cloud as input and generates a set of collision-free
grasp proposals for parallel two-finger grippers. Each grasp
proposal is represented by grasp position, width, height, depth
and a grasping score. We generate the grasp-pose candidates
with the following steps: (1) Given a language instruction, we
get segmentation maps of the target object by open-vocabulary
querying. (2) Use rendered depth to re-project the segmentation
map of the queried object from each viewpoint to produce a
dense point cloud representation. (3) Locate the object with a
bounding box and convex hull. (4) Combine the object’s point
cloud with the centers of all 3D Gaussian primitives because
these centers of primitives have the spatial information of the
whole scene, which is beneficial for generating collision-free
grasp poses. (5) Employ AnyGrasp to generate grasp poses,
which are restricted in the aforementioned bounding box.

Normal-guided grasp: Although AnyGrasp provides a
“grasping score” for each grasp proposal, the grasp pose with
the highest score may not be the suitable one for stable grasp.
Thus, we explicitly utilize the force closure theory as a screening
mechanism. For each grasp pose proposal with two contact
points, we calculate the angle between the grasping line and
the surface normal of each contact point and get the sum of
two angles. If the sum of the two angles is less than or equal
to a pre-defined threshold θthre, we regard the grasp pose as
a feasible proposal, otherwise it is unfeasible, as shown in
Fig. 2(c). We choose the pose with the highest “grasping score”
in feasible proposals as the final grasp pose.

4) Gaussian Field Updating: After moving the object from
an initial place to a target place, the initial place will be
empty as a lack of Gaussian primitives due to the occlusion
during the reconstruction. Thus, the Gaussian field need to be
fine-tuned. The process of the scene update is: (1) getting all
Gaussian primitives within this object’s convex hull; (2) getting
the transformation of the object, recorded as a rotation matrix
R and a translation matrix t, which can be calculated from the
change of the end-effector’s pose from the start to the end of
the manipulation; (3) operating all Gaussian primitives of the
object with the same rotation R and translation t; (4) collecting
RGB-D images of the new scene from fewer viewpoints and use
them to fine-tune 3D Gaussian field. The fine-tuning of the field
only occurs in the initial place and the target place.

IV. EXPERIMENT

In this section, we first introduce the experimental setup. Next,
we conduct experiments to validate our proposed EFD module
where we report both quantitative results and qualitative results.
Subsequently, we show the results of geometry reconstruction
and conduct experiments to demonstrate the effectiveness of the
normal-guided grasp module. Finally, we conduct grasp-update-
grasp experiments to prove the effectiveness and efficiency of
our scene update module.

Please note that the bold values in the following tables repre-
sent the best results under the specific evaluation metric.

A. Experimental Setup

1) Scenes, Objects and Devices: We build a 140× 70×
30cm3 desktop scene with common objects in daily life includ-
ing various food, tableware and office supplies. A UR5 robot arm
equipped with a ROBOTIQ gripper is used to execute robotic
manipulation. We set up our system in 10 open desktop scenes
with a total of 44 objects (40 are graspable) and we execute
language-guided manipulation 120 times. An NVIDIA RTX-
3090 GPU is used to process collected data and to reconstruct
the 3D Gaussian field.

2) Data Collection and Processing: We first use the robot
arm equipped with a Realsense D455 to scan the desktop scene
from 16 viewpoints to get multi-view RGB-D images. At the
same time, we also record the camera extrinsic parameters,
calculated through the transformation between the end effector
and robot base. After obtaining RGB-D maps, we re-project
the images to 3D and convert each view’s point cloud from
its camera coordinate to the base coordinate to form a point
cloud. We downsample the point cloud to about 300 k points
to initialize the 3D Gaussian primitives. The collected images
are then processed by SAM and CLIP to generate segmentation
maps and open-vocabulary feature maps. To get the semantic
ground truth of the collected images, we utilized SAM as an
auxiliary tool to manually annotate all objects in the images.

B. Results of Efficient Feature Distillation

We show both qualitative results and quantitative results to
demonstrate the effectiveness and efficiency of our proposed
EFD module. Our baselines are Lseg [46] and LERF [16] (All
mention of LERF in our experiments includes an extra depth
supervision to ensure a fair comparison with our method.)

In qualitative results, we compare our method with SAM +
CLIP (our 2D feature fusion labels) and LERF and show the
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Fig. 3. Relevance map of the given language instructions. Our method exhibits clearer segmentation boundaries compared to LERF, which can be used to obtain
more accurate localization. Compared with SAM + CLIP, our approach exhibits more consistent open-vocabulary features across multi-views. For instance, in
‘Roasted chicken wing’, the response of SAM + CLIP is the chicken wing and the fork while our method makes the correct response.

TABLE I
QUANTITATIVE COMPARISONS OF SEMANTIC SEGMENTATION, LOCALIZATION

ACCURACY AND EFFICIENCY ON OUR SCENARIOS

relevance map of each given language instruction. As shown in
Fig. 3, the purple boxes demonstrate that the features extracted
from SAM and CLIP are not accurate such as the wooden fork
in ‘Wooden fork’ and the pot and Turkey with similar semantic
features in ‘Turkey’. In comparison, the results of our method
are more accurate, proving that our reconstructed feature field
solves the problem of feature inconsistency across multiple
views. Besides, compared with LERF, our method exhibits
better segmentation boundaries, proved by the ‘Fish’ and the
‘Roasted chicken wing’. That is because we take advantage of
the segmentation prior of SAM.

We report the quantitative results of two tasks: segmentation
and localization, evaluated by mIoU and accuracy respectively.
In the segmentation task, as described in Section III-C1, we
filter out the region whose relevance score is below 0.85 to
form a predicted segmentation map. We calculate the mIoU be-
tween predicted segmentation maps and our manually annotated
ground truth. In the localization task, following LERF, given a
language instruction, if the point with the highest relevance score
is in the target object, it is a successful localization. We calculate
the average accuracy of all responses as the metrics. The results
of segmentation and localization are shown in Table I where our
method significantly outperforms other baselines.

Besides, we validate the efficiency of our method. Training
speed (T-S), represented as the time cost per training step is used

to evaluate the reconstruction efficiency and query speed (Q-S),
represented as the time cost per text query is used to evaluate the
inference efficiency. We also compare the memory usage (Mem)
during training. As shown in Table I, our method achieves an
approximate 180× query speedup over LERF and takes the least
memory usage and training time.

C. Ablation Studies of Proposed Modules

We conducted experiments to validate the effectiveness of the
contrastive loss Lcontr. and the EFD module. The settings of the
experiments are as follows: (1) In the w/o EFD setting, we extract
dense features by using the MaskCLIP [47] reparameterization
trick. Then, we directly distill 2D features into 3D Gaussian
fields. (2) In the w/oLcontr. setting, we don’t supervise the latent
feature and increase the number of the sampling pixels used in
calculating the distillation loss Ldistill. As shown in Table I,
the EFD module significantly increases the performance and
efficiency. Besides, utilizing contrastive loss also improves the
numerical results.

D. Results of Geometry Reconstruction

We show the visualization of our rendered depth and normal
compared with ground truth (scanned by D455 camera), as
shown in Fig. 4. The black region represents the invalid value
of ground truth. It can be seen that the surface normal we
rendered is smoother than the ground truth, as shown in red
boxes. Furthermore, even in areas where the ground truth is
invalid, we can still render accurate depth and surface normal,
as proved by the silver eyeglass case in the third row.

E. Results of Language-Guided Manipulation

In this subsection, we show the result of languaged-guided
grasping where we tested 120 times on 40 objects. We compare
our method with (1) Lseg+AnyGrasp and (2) LERF+AnyGrasp.
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Fig. 4. Compared with scanned depth and surface normal, our rendered depth
and surface normal is smoother. Our method renders accurate depth and surface
normal even in areas where the ground truth is invalid.

TABLE II
GRASPING RESULTS: WE COMPARE OUR METHOD WITH OTHER TWO

BASELINES AND OUR METHOD W/O NORMAL FILTER

Fig. 5. Effectiveness of our proposed normal-guided grasp. The left column
shows the top 5 grasp pose candidates and the color bar which represents the
grasping score. The middle column displays the surface normal of the object,
with purple arrows indicating the normal of the contact points. The right column
shows the successful execution of grasping the knife utilizing the selected final
grasp pose.

To obtain the 3D point cloud, we use the rendered depth to
re-project the segmentation masks of LERF and use scanned
depth to re-project the segmentation masks of LSeg. A success-
ful grasp is defined as grasping the correct object and raising it
to a height of 10 cm over 3 seconds. As shown in Table II, our
method far exceeds other methods in success rate.

F. Effectiveness of Normal-Guided Grasp

In this subsection, we aim to validate the effectiveness of
our proposed normal-guided grasp. We first give the qualitative
result to validate that the surface normal can filter out unfeasible
grasp poses. As shown in Fig. 5, the original top-ranked proposal
(red) is filtered out as the angles between its grasping line and
surface normal of contact points are too large. In contrast, the
original second-ranked proposal is feasible. Thus, we execute a
grasp based on this pose. We also report the quantitative results
of the grasping success rate with and without the normal filter,
as shown in Table II. Leveraging the normal filter increases the

Fig. 6. Results of scene update. We show the RGB, depth, normal, and
segmentation before and after the scene update based on the language query
“orange”. As indicated by the yellow boxes, our scene updating successfully
moves the orange to the plate and restores the region that was previously obscured
by the orange. As indicated by the red boxes, the updated orange still maintains
accurate geometry and semantic features.

TABLE III
EFFIECIENCY COMPARISON BETWEEN LERF AND OUR METHOD

success rate by 7.7%, further demonstrating the effectiveness of
our proposed normal-guided grasp.

G. Validation of Scene Updating

We validate the effectiveness of our proposed scene updating
via continuous language-guided picking and placing. We exe-
cute an experiment whose process is (1) picking up the object and
placing it to the target position according to the language instruc-
tion; (2) capturing RGB-D images from 5 viewpoints to update
the scene; (3) executing another manipulation on this object. As
shown in Fig. 6, our updated scene retains high-quality RGB,
geometry, and semantic features, proving the effectiveness of the
scene update module. Besides, we also compare the efficiency
between LERF and ours including viewpoint numbers, memory
usage and reconstruction time for updating, as shown in Table III.
Our scene update capability enables the reconstructed scene to
handle continuous grasping.

V. LIMITATION AND FUTURE WORK

Limitation: Our method can’t reconstruct the transparent and
highly reflective objects’ geometry with high quality. Besides,
our method fails to completely reconstruct the feature field and
geometry of the seriously occluded objects in cluttered scenes.

Future work: It is encouraging to explore a physics-aware
method that can adapt the grasp force according to the friction
coefficient and mass of the object. Additionally, incorporating
scene flow estimation and 3D scene editing technology to make
the reconstructed field dynamic will make the feature field
reconstruction widely used in robotics.
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VI. CONCLUSION

This letter introduces GaussianGrasper, a novel approach
for open-world robotic grasping guided by natural language
instructions. Taking multi-view RGB-D images as input, our
method efficiently reconstructs consistent feature fields through
our proposed EFD module. The feature field enables robots to
understand the open world and make precise localization based
on language instructions. Besides, we estimate the geometry
and propose the normal-guided grasp to augment the robotic
grasping. Furthermore, our scene can also be quickly updated to
support continuous grasping.
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